Comparison of cytotoxic, genotoxic and epigenetic effects of heated tobacco product, electronic cigarette and conventional cigarette emissions in human bronchial epithelial cells

<u>Anne Platel¹</u>, Gianni Zarcone¹, Marie Lenski¹, Thomas Martinez¹, Smaïl Talahari¹, Guillaume Garçon¹, Fabrice Nesslany¹, Jean-Marc Lo Guidice¹, Sébastien Anthérieu¹

¹ CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPact de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France

INTRODUCTION

Tobacco use is a major public health problem, causing 8 million deaths each year worldwide. Cigarette smoke exposure is responsible for almost 30% of cancer deaths and the cause of almost 90% of lung cancer. Smoking cessation is, at present, the only effective way to slow down the progression of cancer. Recently, new alternatives to conventional cigarettes, such as electronic cigarettes (e-cigs) and heated tobacco products (HTP) have emerged on the market. They are generally perceived as low-risk substitutes for cigarette and have rapidly gained popularity in the absence of any real evidence of their safety. In this context, we had undertaken an emerging in vitro study, in pulmonary BEAS-2B cells exposed using a smoking machine, in order to compare the

MATERIALS AND METHODS

cytotoxic, genotoxic and epigenetic effects of emissions from HTP (iQOS), e-cigs (18W and 30W) and conventional cigarette (3R4F).

 \rightarrow 24h after exposure, HTP emissions induced reduced cytotoxicity compared to cigarette 3R4F smoke but higher than e-cig aerosols

- → E-cigs: No (oxidative) DNA damage
- → HTP: Increase in oxidative DNA damage
- → 3R4F: Increase in oxidative and non oxidative DNA damage

→ 3R4F: Slight increase in micronuclei after 10 puffs → E-cigs & HTP: No chromosomal aberrations

Epigenetic effects

Global DNA methylation

No DNA methylation

Histone modifications

H3K9me3

ns

Mb-18W Mb-30W

H3K4me3

HTP

0.8-

20.6

<u>ଟ</u> 0.4-

0.2-

Negative

Control

H3K27me3

microRNA deregulations

Mb-18W Mb-30W

HTP

3R4F

miR-21-5p

- This preliminary study demonstrates that HTP aerosol showed reduced cytotoxicity and genotoxicity compared to cigarette smoke but higher than e-cig aerosols in human bronchial epithelial cells.
- Surprisingly, cigarette smoke does not induce histone modulation or DNA methylation in acutely exposed BEAS-2B cells.
- The development of an *in vitro* repeated exposure protocol and animal studies should allow a better assessment of the the epigenetic impact of the emissions and their toxicity over the long term.

This work benefited from the French National Cancer Institute (INCa) and the French Institute for Public Health Research (IReSP): Contracts N° INCa_13648 and N° INCa-IReSP_15748

